Surface-Rupturing Historical Earthquakes in Australia and Their Environmental Effects: New Insights from Re-Analyses of Observational Data

Created 16/10/2025

Updated 16/10/2025

We digitize surface rupture maps and compile observational data from 67 publications on ten of eleven historical, surface-rupturing earthquakes in Australia in order to analyze the prevailing characteristics of surface ruptures and other environmental effects in this crystalline basement-dominated intraplate environment. The studied earthquakes occurred between 1968 and 2018, and range in moment magnitude (Mw) from 4.7 to 6.6. All earthquakes involved co-seismic reverse faulting (with varying amounts of strike-slip) on single or multiple (1–6) discrete faults of ≥ 1 km length that are distinguished by orientation and kinematic criteria. Nine of ten earthquakes have surface-rupturing fault orientations that align with prevailing linear anomalies in geophysical (gravity and magnetic) data and bedrock structure (foliations and/or quartz veins and/or intrusive boundaries and/or pre-existing faults), indicating strong control of inherited crustal structure on contemporary faulting. Rupture kinematics are consistent with horizontal shortening driven by regional trajectories of horizontal compressive stress. The lack of precision in seismological data prohibits the assessment of whether surface ruptures project to hypocentral locations via contiguous, planar principal slip zones or whether rupture segmentation occurs between seismogenic depths and the surface. Rupture centroids of 1–4 km in depth indicate predominantly shallow seismic moment release. No studied earthquakes have unambiguous geological evidence for preceding surface-rupturing earthquakes on the same faults and five earthquakes contain evidence of absence of preceding ruptures since the late Pleistocene, collectively highlighting the challenge of using mapped active faults to predict future seismic hazards. Estimated maximum fault slip rates are 0.2–9.1 m Myr−1 with at least one order of uncertainty. New estimates for rupture length, fault dip, and coseismic net slip can be used to improve future iterations of earthquake magnitude—source size—displacement scaling equations. Observed environmental effects include primary surface rupture, secondary fracture/cracks, fissures, rock falls, ground-water anomalies, vegetation damage, sand-blows/liquefaction, displaced rock fragments, and holes from collapsible soil failure, at maximum estimated epicentral distances ranging from 0 to ~250 km. ESI-07 intensity-scale estimates range by ± 3 classes in each earthquake, depending on the effect considered. Comparing Mw-ESI relationships across geologically diverse environments is a fruitful avenue for future research.

Files and APIs

Tags

Additional Info

Field Value
Title Surface-Rupturing Historical Earthquakes in Australia and Their Environmental Effects: New Insights from Re-Analyses of Observational Data
Language eng
Licence Not Specified
Landing Page https://data.gov.au/data/dataset/80b05c2d-02e7-4d53-9fe6-2f38e9711a04
Contact Point
Geoscience Australia Data
clientservices@ga.gov.au
Reference Period 08/04/2019
Geospatial Coverage
Map data © OpenStreetMap contributors
{
  "coordinates": [
    [
      [
        112.0,
        -44.0
      ],
      [
        154.0,
        -44.0
      ],
      [
        154.0,
        -9.0
      ],
      [
        112.0,
        -9.0
      ],
      [
        112.0,
        -44.0
      ]
    ]
  ],
  "type": "Polygon"
}
Data Portal Geoscience Australia

Data Source

This dataset was originally found on Geoscience Australia "Surface-Rupturing Historical Earthquakes in Australia and Their Environmental Effects: New Insights from Re-Analyses of Observational Data". Please visit the source to access the original metadata of the dataset:
https://ecat.ga.gov.au/geonetwork/srv/eng/csw/dataset/surface-rupturing-historical-earthquakes-in-australia-and-their-environmental-effects-new-insig